Ethics and responsibility in the use of Data Mining Techniques
DOI:
https://doi.org/10.26853/Refas_ISSN-2359-182X_v12n01_01Keywords:
Data Mining, Ethics, TechnologyAbstract
This article aims to discuss the use and treatment of data collected through mining techniques. The creation of a descriptive and predictive analysis project that will use data collected from the Carapicuíba region, demonstrates the stages of the mining process, from collection, treatment, interpretation and evaluation of final results, and finally, ethics in use of this information. The databases collected for the article were taken from the Data MPE Brasil platform, a Sebrae information production and dissemination service. The databases refer to the growth of companies divided by sectors in the Carapicuíba region between 2014 and 2024. The mining technique chosen for the project was the creation of a Linear Regression Machine Learning model. The result of the Linear Regression was the forecast, to determine the possible growth of the sectors until the next decade. The research determined growth and decline for several sectors in the region. In the end, it was verified the need for adequate and responsible treatment of data for use in statistical analyses, ensuring that the results are ethical, accurate and impartial.
Downloads
References
AWARI. Ética na mineração de dados: considerações e melhores práticas, 2023. Disponível em https://awari.com.br/etica-na-mineracao-de-dados-consideracoes-e-melhores-praticas/?utm_source=blog&utm_campaign=projeto+blog&utm_medium=%C3%89tica%20na%20minera%C3%A7%C3%A3o%20de%20dados:%20considera%C3%A7%C3%B5es%20e%20melhores%20pr%C3%A1ticas#:~:text=A%20%C3%A9tica%20na%20minera%C3%A7%C3%A3o%20de%20dados%20exige%20que%20as%20organiza%C3%A7%C3%B5es,de%20medidas%20corretivas%2C%20quando%20necess%C3%A1rio. Acesso em 7 maio. 2024.
AWS. O que é regressão linear? 2023. Disponível em https://aws.amazon.com/pt/what-is/linear-regression/. Acesso em 21 maio 2024.
DEVMEDIA. Descoberta de conhecimento utilizando o processo KDD, 2017. Disponível em https://www.devmedia.com.br/descoberta-de-conhecimento-utilizando-o-processo-kdd/38709. Acesso em 7 maio. 2024.
MARIO Filho. As Métricas Mais Populares para Avaliar Modelos de Machine Learning, 2018. Disponível em https://mariofilho.com/as-metricas-mais-populares-para-avaliar-modelos-de-machine-learning/#precis%C3%A3o-precision. Acesso em 21 maio 2024.
OLIVEIRA, Clébio de. Métricas para Regressão: Entendendo as métricas R², MAE, MAPE, MSE e RMSE. Medium, 2021. Disponível em https://medium.com/data-hackers/prevendo-n%C3%BAmeros-entendendo-m%C3%A9tricas-de-regress%C3%A3o-35545e011e70. Acesso em 21 maio 2024.
RIBEIRO, Débora. Ética. Dicionário Online de Português, 2024. Disponível em https://www.dicio.com.br/etica/. Acesso em 21 maio. 2024.
SHASHKO, Daniel. As 10 principais técnicas de mineração de dados. Astera, 2024. Disponível em https://www.astera.com/pt/type/blog/top-10-data-mining-techniques/. Acesso em 7 maio. 2024.
TOTVS. Mineração de dados: o que é, importância e ferramentas, 2022. Disponível em https://www.totvs.com/blog/negocios/mineracao-de-dados/. Acesso em 7 maio. 2024.
ZENDESK. 4 tipos de análise de dados para criar estratégias certeiras, 2023. Disponível em https://www.zendesk.com.br/blog/tipos-analise-de-dados/#section-3. Acesso em 21 maio 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Refas - Revista Fatec Zona Sul

This work is licensed under a Creative Commons Attribution 4.0 International License.
1 - As fontes dos dados, as autorizações pertinentes e os textos publicados na revista são de inteira responsabilidade de seus autores.
2 - É permitida a reprodução, desde que citada a fonte e o autor.
3 - Após o artigo aprovado, o autor principal deverá enviar declaração, conforme o modelo:
Refas - Revista Fatec Zona Sul
Autorização par publicação
(Nome do autor), (no caso de vários autores citar todos), autorizo (ou autorizam, no caso de diversos autores) a publicação do artigo (nome do artigo), com exclusividade para a primeira publicação pela Revista Fatec Zona Sul, em meio eletrônico.
A contribuição é original e inédita, e não está sendo avaliada para publicação por outra revista; caso contrário, deve-se justificar em "Comentários ao editor".
Dados de todos os autores:
Nome completo:
Instituição:
E-mail:
Telefone:
Obs.: Informar os códigos dos serviços DDD e DDI.
Assinatura do autor principal: ____________________________________
Aviso de Direito Autoral
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
b) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
c)Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons CC Attribution 4.0, acessável em Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.